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Abstract— Converting wind kinetic energy into electrical energy by using wind turbine 
is one of the interested approaches to get rid of fossil fuels as a source of energy. Wi n d 
turbine behavior’s simulation is a common way to design a high performance turbine. 
On of the important parameters in wind turbine’s design is the value of it’s geometrical 
angles. In this study we simulated the behavior of wind turbines by applying unsteady 
blade element method in order to calculate the appropriate values for these angles . Also 
we presented the effect of choosing appropriate value sonthe turbine’s performance. 
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Abstract—Converting wind kinetic energy into electrical en-
ergy by using wind turbine is one of the interested approaches
to get rid of fossil fuels as a source of energy. Wind turbine behav-
ior’s simulation is a common way to design a high performance
turbine. On of the important parameters in wind turbine’s design
is the value of it’s geometrical angles. In this study we simulated
the behavior of wind turbines by applying unsteady blade element
method method in order to calculate the appropriate values for
these angles. Also we presented the effect of choosing appropriate
values on the turbine’s performance.

I. INTRODUCTION

Wind power is the conversion of wind energy into a useful
form of energy and wind turbine is a device that converts
wind’s kinetic energy into electrical energy. The main purpose
of researches on wind turbines is to obtain generated power
and providing methods to increase that.

Early research on wind turbines back to the nineteenth
century. Where in 1865 Rankine for the first time expressed
momentum theory for an actuator disk [1]. After, Froude [2]
introduced blade element theory and the first time combined
momentum theory and blade element theory called blade
element momentum (BEM) theory. Then the maximum power
can be obtained from a free stream which one specific ap-
plication of is in wind turbines introduced. This theory is
also named Lanchester (1915), Betz (1920) and Zhukovsky
(1920) which all are based on Rankines momentum theory
of actuator disk [3] . In 1926 Prandtl presented tip correction
which is actually a correction for non-uniformity flow between
blades [4]. A vortex wake description for induction presented
by Goldstein in 1929 [5]. But the calculations were just
for fixed, non-rotating vortices. Glauert introduced developed
blade element momentum theory in 1935 that includes some
aspects of wake swirl, but it’s effect on radial pressure gradient
were not considered [6]. In 1974 Wilson and Lissaman offered
optimization of wind turbine revised by De Veris in 1979 and
the aerodynamics of wind power machines and related fluid
dynamics fields applied in [7]. In recent years many research
projects, including engineering methods in order to dispel the
limitations of the BEM theory has been presented.

Blade element momentum (BEM) method is one of the com-
mon methods to simulate the performance of a wind turbine
which is simple and has less computation in comparison to

other methods. It is possible to calculate steady forces exerted
on the blade by using this method. Also trust and power
for different conditions of wind speed, rotational speed and
blade angles can be calculated. To calculate the forces exerted
at different times for a number of time-varying inputs other
engineering models must also be included.

In the one-dimensional momentum theory real geometry of
the rotor, number of blades, thickness changes, rotating blades
and applied airfoil profile for blades were not considered. In
order to evaluate the events surrounding the wind turbine’s
blade, definition of full geometry is necessary. Hansen et al.
[8] proposed a geometry with four coordinate systems. These
coordinate systems introduce various angles. As it will be
shown, changing values of these angles has a direct impact
on turbine performance. So the setting value of these angles
is one of the factors that must be considered during design.

The purpose of this paper is to calculate the appropriate
values for these angles and show the impact of choosing these
new values on wind turbine performance.

II. THEORY

A. Geometry Definition

The first step to simulate the behavior of a wind turbine is
to define it’s geometry. Here we apply the method that Hansen
et al. [8] applied to define the geometry of the wind turbine.
This geometry is shown in figure 1.

Since wind characteristics at various times and places differ,
it is important that the position of each point along the blade be
specified relative to a fixed coordinate system at any moment.
So fixed coordinate system (coordinate system 1) can be
placed at the bottom of the tower. Coordinate system 2 is
a non-rotating one and placed on the nacelle. This system is
first rotated about the x-axis with the angle θyaw and then is
rotated θtilt about the y-axis. Coordinate system 3 is mounted
on the rotating shaft and rotated about the z-axis with the
angle of θwing relative to the system 2. Coordinate system 4
is placed on one of the blades and only rotated θcone about the
y-axis relative to the system 3. So vectors in each coordinate
system can be easily transferred to another coordinate system
by utilizing transformation matrix.



Fig. 1. Coordinate systems used for describing wind turbine geometry [8]

B. Unsteady BEM Method

Before describing BEM method it is reasonable to introduce
simple one dimensional (1-D) method for an ideal rotor. In
this model the rotor assumed as a permeable disk. Due to the
negligible effect of friction and rotational velocity component
in the wake, this disk considered as an ideal one. This device
decreasing the wind speed from V0, far upstream, to the u, at
the rotor plane, and u1, in the wake. Since the value of the
Mach number is small, it is possible to assume incompressible
flow, thus the density is constant along a streamline and the
axial velocity reduces continuously. By assuming the rotor as
an ideal disk, a simple relationship can be derived between
velocities V0, u1 and u [8]:

u =
1

2
(V0 + u1) (1)

It is obvious that the velocity at the rotor plane is the mean of
wind velocity V0 and the wake velocity u1. By defining the
axial induction factor, a , as:

u = (1− a)V0 (2)

And by combining equations (1) and (2) we have:

u1 = (1− 2a)V0 (3)

And also the rotational velocity in the wake, Cθ, is given by
defining tangential induction factor, a′:

Cθ = 2a′ωr (4)

BEM method couple momentum theory with the events that
are taking place around a real blade. Stream tube of 1-D
momentum theory is divided into N annular element with
thickness equal to dr, as shown in figure 2. Lateral boundary
of this elements is limited by the stream lines. Therefore, no
flow will pass through the elements.

Fig. 2. Annular elements to be used in the BEM method [8]

Fig. 3. Velocity triangle seen on a blade [8]

The following assumptions are used for annular elements in
BEM method:
• There is no radial dependence, so what occurs in one

element does not affect other elements.
• Force exerted by the blades on each of the annular

elements is constant i.e. it is assumed that the number
of rotor blades is infinite.

A correction factor known as Prandtl’s tip loss factor is applied
to reform the second assumption.

By using defined geometry, undisturbed wind velocity seen
by the blade ,V0, can be achieved by transforming wind
velocity V1 into the coordinate system 4:

V0 =

 Vx
Vy
Vz

 = a14V1 (5)

Where a14 is the transformation matrix between coordinate
system 1 and 4. As shown in figure 3 wind velocity seen by
each blade Vrel is the summation of the rotational velocity,
Vrot, the induced velocity, W and V0:(

Vrel,y
Vrel,z

)
=

(
Vy
Vz

)
+

(
−Vrot

0

)
+

(
Wy

Wz

)
(6)

From figure 3 it is obvious that the angle of attack, α, could
be found when W is known.

So by using BEM method the magnitude of induced veloc-
ities and angle of attack can be determined. For calculating
induced velocities we have [9]:

Wn = Wz =
−BL cosφ

4πρrF |V0 + fgn(n.W)|
(7)



Fig. 4. The local loads on a blade [8]

and:
Wt = Wy =

−BL sinφ

4πρrF |V0 + fgn(n.W)|
(8)

Where ρ is density of the air, r is radius of the blade, B is
number of the blades, L is lift, F is Prandtl’s tip loss factor
and fg is Glauert correction which would be explained later.

After calculating induced velocities magnitude the value of
Vrel can be determined . According to figure 3 we have:

tanφ =
Vrel,z
−Vrel,y

(9)

So for angle of attack:

α = φ− (β + θp) (10)

Where β is twist angle and θp is pitch angle. Knowing α lift
and drag coefficients could be determined by utilizing airfoil
properties and:

L =
1

2
ρ|Vrel|2cCl (11)

and:
D =

1

2
ρ|Vrel|2cCd (12)

Where L and D are lift and drag and c is local chord. Since
forces which are normal and tangential to the rotor plane are
interested, as shown in figure 4 we project the lift and drag
into these directions:

pT = L cosφ+D sinφ (13)

and:
pN = L sinφ−D cosφ (14)

Finally the generated power can be calculated by:

P = ωpNr (15)

C. Correcting Models

1) Prandtl’s Tip Loss Factor: As mentioned before
Prandtl’s tip loss factor, F , is a factor that corrects the
assumption of infinite number of blades. It is defined as [8]:

F =
2

π
cos−1(e−f ) (16)

where:
f =

B

2

R− r
r sinφ

(17)

B is number of blades, R is the maximum radius of each
blade, r is the radius of each annular element and φ is the
angle between relative velocity and horizontal line (as shown
in figure 3)

2) Glauert Correction: When the axial induction factor
become greater than a certain value, this method could not
be used anymore. So a correction factor can be applied when
induction factor is greater than ac and defined as [8]:

fg =

{
1 a ≤ ac
ac
a (2− ac

a ) a > ac
(18)

The value of ac usually considered equal to 0.2.
3) Dynamic Wake Model: Due to effects of unsteadiness,

during calculation of induced velocity some errors would
appear. So it is necessary to use a filter for induced velocity
to correct it’s errors. One model which utilizes two first order
differential equations is presented [10]:

Wint + τ1
dWint

dt
= Wqs + k.τ1

dWqs

dt
(19)

and:
W + τ2

dW

dt
= Wint (20)

Where Wqs is the value found by equations (7) and (8), W is
the filtered value of induced velocity and τ1 and τ2 are two
time constants calculating by:

τ1 =
1.1

(1− 1.3a)
.
R

V0
(21)

and:
τ2 = (0.39− 0.26

( r
R

)2
).τ1 (22)

And k is a constant equal to 0.6.
4) Yaw/Tilt Correction Model: When the rotor is yawed

(or tilted) the value of induced velocity differs from which
calculated by equation (19) and (20). So it is necessary to use
a model to correct this difference as [11]:

W = W0(1 +
r

R
tan(

χ

2
) cos(θwing − θ0)) (23)

Where the wake skew angle , χ, is defined as the angle
between the wind velocity in the wake and the rotational axis
of the rotor by:

cosχ =
n.V′

|n|.|V′|
(24)

And W0 is the induced velocity found by equations (19) and
(20) and θwing shows the positions of blade and is defined as:

θwing(t+ ∆t) = θwing(t) + ω.∆t (25)

it’s initial value is θ0.

D. Wind Velocity Profile
Wind velocity profile which is commonly used, is the profile

obeying the boundary shear model as shown in figure 5. The
equation for this profile is:

V0(x) = V0

( x
H

)ν
(26)

where H is the hub height, x is the distance from the surface
and ν a parameter giving the amount of shear and for this case
is equal to 0.25.



Fig. 5. Wind velocity profile [8]

Fig. 6. NREL S809 airfoil configuration [12]

E. Calculation Algorithm

In order to calculate generated power, it is necessary to
provide an algorithm and apply it at any moment for each
blade element. Here we presented an agorithm to use. it
consists of these steps:
• Defining geometry and parameters
• Initializing position and velocities
• Discretizing each blades into N elements
• Utilizing equation (6) to compute relative velocity
• Determining lift and drag coefficient using airfoil prop-

erties with known angle of attack
• Calculating normal and tangential forces
• Calculating generated power
• Utilizing equations (7) and (8) to find new values of

unsteady induced velocities
• Utilizing correction models to find induced velocities’

corrected values.

III. RESULTS

As mentioned before, the first step to simulate the per-
formance of a wind turbine is to determining characteristics
of turbine and it’s surrounding air. So, for this we utilized
characteristics which have been used in [8] for both turbine
and it’s blades and surrounding air. Also the airfoil section is
a NREL S809 which is shown in figure 6. Properties of this
airfoil are also shown in figure 7 [12].

First, we chose some initial and arbitrary values for different
angles of turbine. These values are listed in table I. The
turbine’s performance is demonstrated and it’s results are
shown in figures 8, 9 and 10. In figure 8 exerted momentum

Fig. 7. Airfoil lift and drag coefficient against angle of attack

Fig. 8. Exerted momentum on each blade at different moments (wind velocity
12m s−1)

on each blade plotted at different moment when velocity of
upstream wind is equal to 12 m s−1. Fluctuating behavior of
this diagram is due to the different position of blade at each
moment. Turbine generated power against time is plotted in
figure 9 at upstream wind velocity equal to 12 m s−1. As
rotation of blades changes their whole position at any moment,
generated power fluctuates in time. In figure 10 generated
power calculated at different upstream wind velocity. As we
expected in high wind velocity, increasing behavior of the
generated power diagram ceases and turbine stalls.



Fig. 9. Turbine generated power against time at wind velocity 12m s−1

Fig. 10. Turbine generated power against wind velocity for arbitrary chosen
turbine angles

Since we were interested in appropriate values of turbine
angles, we changed each angle separately to calculate the
generated power against different values of each angles in a
certain velocity of upstream wind. Results are shown in figures
11, 12 and 13 for different values of θtilt, θyaw and θcone
respectively.

Figure 11 shows the the generated power against different
values of tilt angle. Since there is a point in this diagram that
generated power is maximum on it, we chose this value for tilt
angle as an appropriate value. Figure 12 has a maximum point

Fig. 11. Turbine generated power against tilt angle

Fig. 12. Turbine generated power against yaw angle

similar to figure 11. So this would be the appropriate value
for yaw angle. By taking a look on figure 13 it is obvious that
the generated power become maximum in two points. These
two points were chosen as appropriate values for cone angle.

Appropriate values for each angle are listed in table I. The
expectation was by choosing these values for turbine angles
the generated power became maximum. Finally the magnitude
of generated power calculated by choosing these new values
for each angle is shown in figure 14 against wind velocity in
upstream and comprised with it’s initial magnitude.

The importance of choosing appropriate value for these



Fig. 13. Turbine generated power against cone angle

Fig. 14. Turbine generated power against wind velocity for both arbitrary
chose turbine angles and calculated turbine angles

TABLE I
VALUES FOR WIND TURBINE ANGLES

Angle Tilt Cone Yaw

Initial value (deg) 20 −20 −20

Appropriate value (deg) 0.0 0.0 ±11.45

angles can be inferred easily by investigating figure 14.
It is obvious that generated power by turbine is increased
approximately up to 2 times more, only by using appropriate
values for these angles.

IV. CONCLUSION

Wind power is the conversion of wind energy into a useful
form of energy and wind turbine is a device that converts
wind’s kinetic energy into electrical energy. Investigation of
wind turbine performance by simulating it’s behaviour is a
necessary step before fabrication. An issue during design of
wind turbine is the appropriate value for it’s geometrical
angles. In this study we demonstrated the appropriate values
for these geometrical angles by simulating wind turbine be-
haviour. For this, unsteady blade element momentum (BEM)
method was utlized. A certain value for each angle achieved.
Finally the effect of choosing these new values on the turbine’s
performance calculated.
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